
Theoret. chim. Acta (Berl.) 26, 231--236 (1972) 
�9 by Springer-Verlag 11972 

Operator Equations in 
Approximate Molecular Orbital Theories 

II. Integral  Approx imat ions  and  Charge  Dis t r ibut ions  

KARL JUG 
Department of Chemistry, Saint Louis University, Saint Louis, Missouri 63156, USA 

and Institut fiir Theoretische Chemie der Universitgt Stuttgart* 

Received March 27, 1972 

The general concept of integral approximations based on the Heisenberg equation of motion 
[r, h] = p is developed for one- and two-electron operators in polyatomic molecules. The formalism 
leads to a new definition of atomic charge distributions in molecules. Mulliken's integral approximation 
and population analysis are included as special cases. 

Das allgemeine Konzept von Integralapproximationen, die auf der Heisenbergschen Bewegungs- 
gleichung I'r, hi = p basieren, wird fiJr Ein- und Zweielektronenoperatoren in mehratomigen Mole- 
kiilen entwickelt. Der Formalismus fiihrt zu einer neuen Definition yon Atomladungen in Molektilen. 
Mullikens Integralapproximation und Verteilungsanalyse sind als Spezialf~ille enthalten. 

1. Introduction 

In a previous paper [1], we tested the suitability of commutator relations 
[t, x] = u with hermitian and antihermitian operators t, x and u as a basis for 
approximations in semiempirical molecular orbital methods. In particular, we 
were interested in integral approximations based on the Heisenberg uncertainty 
principle I-r, p] = -  1 and the Heisenberg equation of motion [r, hi = p. The 
approximate integral relations resulted from truncated expansions of the com- 
mutator integrals. We derived formulas for ff's over non-orthogonal atomic 
orbitals and fl's over orthogonalized atomic orbitals [2]. The accuracy of the 
relations was tested for 2s-, 2po-- and 2prc-orbitals in homonuclear diatomics. 
A way to generalize the concept to polyatomics was briefly described. In the 
present paper, we want to develop the general formalism for polyatomic molecules 
both for one- and two-electron operators. This leads also to a new definition of 
atomic charge distributions in molecules. 

2. One-Electron Integrals 

From the commutator equation 

u =  I-t, x-I 

* Present address. 

(2.1) 
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we obtain an infinite expansion 

u,~ = ~ t ~ z x ~  - x ~ t ~  (2.2) 

for integrals u,~ = (/~1 u I v )  etc. over hermitian or antihermitian operators u, t, x 
and atomic orbitals #, v. 2 is taken over a complete, orthogonal set of orbitals. In 
case that a truncated expansion consisting of two orthogonalized orbitals [2] 
corresponding to # and v is used, the following approximations result for integrals 
over one-electron operators [1]. 

Yob = �89 + ~bb) + 
Tab- �89 Sab(Taa + 7bb) 

m 

t aa - - t bb  
('X aa - -  "Xbb) 

( l  - -  Sa 2 )  _ 
- Uab, (2.3) 

taa - -  tbb 

tab 1 
Xab -~- - -  (Xaa - -  Xbb ) "J- blab. (2.4) 

t a a -  tbb taa - -  tbb 

Quantities with bar refer to non-orthogonal AO's g, b, without bar to symmetri- 
cally orthogonalized AO's a, b. These approximations have been investigated for 
cases where g and b are orbitals of the same type on different centers A and B, 
e.g. 2 s , -  2sb, 2 p a a -  2p%,  2pr~ a - 2 p r o  b. Approximation (2,3) was previously [1] 
denoted by (B), (2.4) by (B'). 

In case that we use t = r, x = T, u = p, we obtain for the kinetic energy 

T.b=lS~ (La+Tbb)+  (Taa--Tbb + R dR ' 

�89 Sab A R  1 dSab 
Tab----- (1  - -  S2b) -~ R (zaa - Tbb) + R dR (2.6) 

A R  = R - 2R o . 

In case that ~ and b are orbitals of the same type, A R  = R - 2Ro is twice the shift 
of the center of charge from the midpoint between atoms A and B toward either 
A or B. R o is the distance between the center of charge and atom A. A R  is positive 
if the center of charge is moved toward A and negative otherwise. 

For  Coulombic potential energy operators V, we obtain t = r, x -  V, u = 0, 
so that 

V,b = ~S,b (V,a + Fbb) + (V,a - gbb , (2.7) 

�89 Sab A R  
Vab = (1 -- ~'awr ~ n (va" - Vbb) " (2.8) 

For a single-electron Hamiltonian 

h = T + V  
with 

nuclei  

v=  Z v,, 
i 
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(2.5) and (2.7) resp. (2.6) and (2.8) yield the general formulas for polyatomics 

�89176 + + + dR ' 

�89 AR 1 dSab 
~ab "~" (1 - -  S2b) ~r R (O~a - O~b) -~ R d R  " (2 .10)  

These formulas were derived previously 1 for diatomics, here we have shown in a 
simple breakdown that they are the same in polyatomics. 

3. Two-Electron Integrals 

A generalization to two-electron integrals is straightforward and was hinted 
at in an earlier paper [3]. We generalize Eqs. (2.1) and (2.2) to the suitable many- 
electron form 

u = [t, x] (3.1) 
with 

Ex,  
i i i i<j (3.2) 

blab, cd ~ E eaR, cla X2b, lad - -  Xa2, c# t2b, #d 

with 2, 
Uab, ca = ( a c l u l b d )  etc. 

Since the case of two electrons is representative, we shall pursue it for the Heisen- 
berg equation of motion. From 

Pl +P2 = [rl + r2, T1 + T2 + V:t + V2 +/~]r12 ] (3.3) 

the one-electron part can be separated so that 

0 = j r  1 + r 2 , - ~ l  1.rl2 ] (3.4) 

Eq. (3.4) is all we need for the general two-electron problem. If we use the two 
pairs of orthogonalized orbitals a, b and c, d in the double expansion of 

r l  2 J[ 

where ~, b, ~, d-are non-orthogonal orbitals on various centers, we obtain the 
simplest approximation for a multi-center electron repulsion integral 

(~-6lFc-)=�89 {[(a--d,-d~)§ ~[ (~ 'd , -~F)- - ( -bb , -6 -6)]} .  (3.6) 

The general approximation for a multi-center integral is obtained by the same 
expansion of 

1 In [1], several quantities were lumped together in the definition of Ap ; the relation of AQ and AR 
here is A0 = �89 The above definition of AR is possible for all cases where S is different from zero, 
otherwise the definition of Ap is preferable. 
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with subsequent elimination of the hybrid integrals by means of (3.6). The result is 

(-db l6d) = �88 Sab Sod {E(~l ~ )  + (bb I eV) + ( ~  ] Yd) + (bbldd)] 

ARab 
+ ~ [(~]~c-) - (bb ] ~ )  + ('d'aJ d d ) -  (b b Jdd)] 

(3.8) 
+ n R ~  [(~[~c--) + (bb[~) - (~1 dd) - (bbldd)] 

+ ARabncaRab ARea [(~1 ~ )  - (bb I ~ )  - (~ [  dd) + (bb I dd)]} 

It is obvious that (3.8) includes (3.6) as a special case. It also contains many other 
special cases as c = a and d = b etc. The formula (3.8) reduces any kind of multi- 
center hybrid and exchange integral to a combination of Coulomb integrals. It 
represents the simplest generalization of the Mulliken approximation [4]. Cases 
where charge distributions ~b or ~d are composed of different orbitals on the 
same center are excluded. 

If we base our approximations on (3.4) but use orthogonalized orbitals a, b, 
c, d in the expansion, our results are 

�89 ARab 
(ab[cc)= ( 1 -  z ~- [(aalcc)-(bblcc)] (3.9) 

Sab) ~ Nab 

�88 S ,bS~d ARabARc~ 
(ab[cd) = 

( 1 -  ~ ~ Sat,) ~- (1 - S~a) ~ RabR~e 
(3.10) 

�9 [(aalcc) - (aa}dd)-  (bblcc) + (bbldd)]. 

The integrals (ablcc) and (ablcd) vanish, if equivalent orbitals, i.e. of same type 
and equal exponents, on different centers are involved. This special case of equi- 
valence between (3.9) or (3.10) and the Mulliken approximation for the non- 
orthogonal counterpart of the orbitals was discussed by L6wdin [5]. The approxi- 
mations (3.9) and (3.10) are not as good as (3.6) and (3.8). For example, they imply 
that the exchange integrals are generally smaller than the hybrid integrals. A 
counter example can be found in a paper by Fischer-Hjalmars [6-1. The above 
conclusion about the relative accuracy of electron repulsion integral formulas on 
non-orthogonal and orthogonalized basis sets parallels our findings for fi's and 
y s  [1]. 

4. Charge Distributions 

A careful investigation of (3.6) and (3.8) shows the underlying pattern: the 
charge distribution ~b (or ~d) of each electron is expanded in the following way 

~ = �89 [ ( ~  + ~ )  + ~ ( ~ -  bb)]. (4.1) 

It is not difficult to show that the underlying operator equation is 

Jr, 13 = 0. (4.2) 
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This opens the way to a new definition of atomic charges in molecules. Mulliken's 
population analysis [7] distributes overlap distributions Ca CbSab equally over 
atoms A and B. Instead, we obtain from (4.1) by regrouping of the terms and 
integration 

Sab = l l(.aSab + 1NbSab (4.3) 
with 

A R a b  
G =  1 +  - -  

Ra~ 

ARab 
tc b = 1 Rat, 

tca is the weighting factor for the part of the distribution belonging to atom A, 
tc b the corresponding factor for atom B. They are equal only if the center of charge 
of the distribution gb is in the middle between atoms A and B. In this case AR,b  = 0 
holds. 

5. Discussion and Conclusion 

The derivation of approximate formulas in Sect. 2 and 4 was based on a 
two-orbital expansion. This seems to be a reasonable approach if ~ and b are 
orbitals of the same type. In this case the movement of the center of charge from 
the midpoint toward one of the atoms is a useful consideration 2. However, in 
molecular orbital methods, integrals Sab' (~b[~) etc. occur where g and b are not 
of the same type. We have investigated this case also and found that the form of the 
relations remains unchanged, if we generalize our definition of AR.  Let us start 
with the non-orthogonal expansion corresponding to (2.2) 

Uab= 2 ~z(S-1)ZX'~z'b--Xax(S-1)ZZ'~'b " (5.1) 
Z,Z" 

In case that a and b are not orbitals of the same type on atoms A and B, we include 
also the corresponding orbitals of the same type on both atoms in the expansion. 
Let us denote ~' corresponding to b and b' corresponding to g. The shielding 
exponents of the corresponding orbitals are allowed to be different. Z, )( are taken 
as g, b, g', b'. If we rearrange the terms according to their magnitude and keep 
only the dominant ones, the following definition of A R  would be the simplest, 
more general than (2.6). 

- Sab AR = 2-Zab - -  (Sa'b-Zaa" -~ Sab' Zbb') - -  Sab(~aa -~ -Zbb)" (5.2) 

z is an axis through atoms A and B. The second term in (5.2) is the one which did 
not occur previously. It refers to atomic dipole moments of distribution 8b. 
So A R  is defined as twice the distance between the midpoint of atoms A and B 
and that point on the internuclear axis for which the higher averaged dipole 
moments in the expansion of 2ab can be neglected. This means that we define R o 

2 The case of 2 p a , 2 p a  b is more sophisticated for different exponents, because the centers of 
negative and positive part of the distribution will be separated. Here AO ~ S A R  is relevant. It will be 
non-vanishing and non-singular for S = 0, when AR itself is not finite. 
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so that z a = z o + Ro with 

2 (~[z o [b) = Sa,b z~a' + Sab, ~bb'. (5.3) 

It is obvious that (5.2) contains (2.6) as a special case if the right side of (5.3) vanishes. 
This is approximately correct for ~, b of same type because the two terms on the 
right side of (5.3) try to cancel each other. 

We have qualitatively investigated the consequences of (5.2) for the case 
~=  2s,, b =  2pab and found the formula without singularities 3. It is worthwile 
to note that in the case of an asymmetrical 2s,2pa b charge distribution, the 
partitioning cannot be equal among atom A and B, even if the exponents are the 
same. In a superficial conclusion, one might consider this as a shortcoming. 
However, one has also to consider that in a homonuclear bond, there should 
exist also a 2paa 2sb charge distribution the partitioning of which counterbalances 
the one of 2Sa2pa b. This allows for an equal gross atomic population on two 
atoms despite intermediate asymmetrical partitioning. 

The formalism developed in this paper is sufficient for use in approximate 
molecular orbital theories. However, one word of caution may be appropriate. 
The Heisenberg equation of motion p = It, h] is valid for the exact Hamiltonian 
and certain model Hamiltonians, but not for an SCF Hamiltonian. The reason is 
that the exchange operator does in general not commute with the position opera- 
tor. This means that approximations for/~'s which refer to an SCF Hamiltonian 
cannot be valid in the same way as those derived for effective single-electron 
Hamiltonians. 

The formulas developed so far seem to offer a greater insight into integral 
approximations. To complement the qualitative aspects of this work, we plan 
to investigate applications in the future. In particular, effects of these formulas for 
gross atomic populations in hetero molecules is one of our aims. 
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3 For somecases, e.g. lsa2paband2s,2p%,thevalueofS,bAR/RmaygotoinfinityasRapproaches 
zero. This is, however, of no practical importance, because it involves a single-center charge redistribu- 
tion. 


